A fast thermal-curing nanoimprint resist based on cationic polymerizable epoxysiloxane

نویسندگان

  • Jizong Zhang
  • Xin Hu
  • Jian Zhang
  • Yushang Cui
  • Changsheng Yuan
  • Haixiong Ge
  • Yanfeng Chen
  • Wei Wu
  • Qiangfei Xia
چکیده

We synthesized a series of epoxysiloxane oligomers with controllable viscosity and polarity and developed upon them a thermal-curable nanoimprint resist that was cross-linked in air at 110°C within 30 s if preexposed to UV light. The oligomers were designed and synthesized via hydrosilylation of 4-vinyl-cyclohexane-1,2-epoxide with poly(methylhydrosiloxane) with tunable viscosity, polarity, and cross-linking density. The resist exhibits excellent chemical and physical properties such as insensitivity toward oxygen, strong mechanical strength, and high etching resistance. Using this resist, nanoscale patterns of different geometries with feature sizes as small as 30 nm were fabricated via a nanoimprint process based on UV-assisted thermal curing. The curing time for the resist was on the order of 10 s at a moderate temperature with the help of UV light preexposure. This fast thermal curing speed was attributed to the large number of active cations generated upon UV exposure that facilitated the thermal polymerization process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoimprint Resist Material Containing Ultraviolet Reactive Fluorine Surfactant for Defect Reduction in Lithographic Fabrication

The generated resist based defects on the template in addition to the presence of particles and contaminants is critical for ultraviolet curing of nanoimprint lithographic fabrication. This procedure is proven to be suitable for advanced resist material design under the process conditions. Nanoimprint resist material containing an ultraviolet reactive fluorine surfactant was developed to modify...

متن کامل

Effect of Applying Ultrasonic Vibration in Hot Embossing and Nanoimprint

Nanoimprint lithography (NIL) is a technology where fine structures on a mold (or template) are transferred onto a substrate coated with thermoplastic or with ultraviolet (UV) curing resins by making contact with the substrate while being heated or exposed to UV lights. Recently, NIL has been applied in semiconductor manufacturing to print fine features of circuits on LSI chips and memories at ...

متن کامل

Organo - Fluorine Chemical Science Inventing the Fluorine Future 2012 Helmut

The generated resist based defects on the template in addition to the presence of particles and contaminants is critical for ultraviolet curing of nanoimprint lithographic fabrication. This procedure is proven to be suitable for advanced resist material design under the process conditions. Nanoimprint resist material containing an ultraviolet reactive fluorine surfactant was developed to modify...

متن کامل

RIMS (real-time imprint monitoring by scattering of light) study of pressure, temperature and resist effects on nanoimprint lithography

To optimize nanoimprint lithography (NIL), it is essential to be able to characterize and control the NIL process in situ and in real time. Recently we have developed a real-time imprint monitoring by the scattering-of-light (RIMS) approach, which allows us to detect the degree of resist deformation and the duration of resist penetration by a mould during the imprint process in real time. In th...

متن کامل

Towards nanoimprint lithography-aware layout design checking

Just as the simulation of photolithography has enabled resolution-enhancement through Optical Proximity Correction, the physical simulation of nanoimprint lithography is needed to guide the design of products that will use this process. We present an extremely fast method for simulating thermal nanoimprint lithography. The technique encapsulates the resist’s mechanical behavior using an analyti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012